1.1. Fourier Transform on $R^{d} . \mathcal{S}$ is the space of functions f such that f and all its derivatives of all orders decay faster than any inverse power at infinity. That is, $f \in \mathcal{S}$, if for any non negative integers k, k_{1}, \cdots, k_{d}, there is a constant $C\left(k_{1}, \ldots, k_{d}, k\right)$, such that

$$
\left|\frac{\partial^{k_{1}+\cdots k_{d}} f}{\partial x_{1}^{k_{1}} \cdots \partial x_{d}^{k_{d}}}(x)\right| \leq C\left(k_{1}, \ldots, k_{d}, k\right)(1+\|x\|)^{-k}
$$

The Fourier transform of f is

$$
g(y)=\widehat{f}(y)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} f(x) e^{i\langle x, y\rangle} d x
$$

The Fourier transform maps $\mathcal{S} \rightarrow \mathcal{S}$.

$$
\begin{aligned}
D_{j} \widehat{f} & =\widehat{i x_{j} f} \\
y_{j} \widehat{f}(y) & =-i \widehat{D_{j} f}
\end{aligned}
$$

The Fourier transform of $f_{a}(x)=f(x-a)$ is

$$
\begin{aligned}
\widehat{f}_{a}(y) & =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} f(x-a) e^{i\langle x, y\rangle} d x \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} f(x) e^{i\langle x+a, y\rangle} d x \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} f(x) e^{i\langle x, y\rangle} e^{i\langle a, y\rangle} d x \\
& =e^{i\langle a, y\rangle} \widehat{f}(y)
\end{aligned}
$$

The Fourier transform of the convolution

$$
g(x)=\left(f_{1} * f_{2}\right)(x)=\int_{R^{d}} f_{1}(x-z) f_{2}(z) d z=\int_{R^{d}} f_{1}(z) f_{2}(x-z) d z
$$

is

$$
\begin{gathered}
\widehat{g}(y)=\int f_{1}(x-z) f_{2}(z) e^{i\langle x, y\rangle} d z d x=\int f_{1}(x) f_{2}(z) e^{i\langle x+z, y\rangle} d x d z=\widehat{f}_{1}(y) \widehat{f}_{2}(y) \\
\int_{R^{2}} e^{-\frac{\|x\|^{2}}{2}} d x=\int_{0}^{\infty} \int_{0}^{2 \pi} r e^{-\frac{r^{2}}{2}} d r d \theta=2 \pi \\
\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-\frac{\|x\|^{2}}{2}} e^{\langle\theta, x\rangle} d x=e^{\frac{\|\theta\|^{2}}{2}}
\end{gathered}
$$

By analytic continuation

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-\frac{\|x\|^{2}}{2}} e^{i\langle x, y\rangle}=e^{-\frac{\|y\|^{2}}{2}} \\
& \left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} \int_{R^{d}} e^{-\frac{\|x\|^{2}}{2 \epsilon}} e^{i\langle x, y\rangle}=e^{-\frac{\epsilon\|y\|^{2}}{2}} \\
& \left(\frac{\sqrt{\epsilon}}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} e^{-\frac{\epsilon}{2}\|x\|^{2}} e^{i\langle x, y\rangle}=e^{-\frac{\|y\|^{2}}{2 \epsilon}}
\end{aligned}
$$

Theorem 1.1. If $f \in \mathcal{S}$ so is \widehat{f}. More over

$$
f(x)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} \widehat{f}(y) e^{-i\langle x, y\rangle} d y
$$

Proof: Let $f_{\epsilon}(x)=\left(f * \phi_{\epsilon}\right)(x)$ where $\phi_{\epsilon}=\left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} e^{-\frac{1}{2 \epsilon}\|x\|^{2}}$.

$$
\begin{aligned}
& \widehat{f}_{\epsilon}(y)=\widehat{f}(y) e^{-\frac{\epsilon}{2}\|y\|^{2}} \\
\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} \widehat{f}_{\epsilon}(y) e^{-i\langle x, y\rangle} d y & =\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} \widehat{f}(y) e^{-\frac{\epsilon}{2}\|y\|^{2}} e^{-i\langle x, y\rangle} d y \\
& =\left(\frac{1}{2 \pi}\right)^{d} \int_{R^{d}} \int_{R^{d}} f(z) e^{-\frac{\epsilon}{2}\|y\|^{2}} e^{-i\langle x, y\rangle+i\langle z, y\rangle} d y d z \\
& =\int_{R^{d}}\left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} f(z) e^{-\frac{1}{2 \epsilon}(x-z)^{2}} d z \\
& =\int_{R^{d}} f(z) K_{\epsilon}(x-z) d z
\end{aligned}
$$

Let $\epsilon \rightarrow 0$. Dominated convergence theorem on the left and approximation of identity on the right.

$$
\left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} \int_{R^{d}} \widehat{f}(y) e^{-i\langle x, y\rangle} d y=f(x)
$$

Theorem 1.2. For $f \in \mathcal{S}$

$$
\int_{R^{d}}|f(x)|^{2} d x=\int_{R^{d}}|\widehat{f}(y)|^{2} d y
$$

Proof.

$$
\begin{aligned}
\int_{R^{d}}|\widehat{f}(y)|^{2} e^{-\frac{\epsilon}{2}\|y\|^{2}} d y & =\left(\frac{1}{2 \pi}\right)^{d} \int_{R^{d}}\left|\int_{R^{d}} f(x) e^{i\langle x, y\rangle} d x\right|^{2} e^{-\frac{\epsilon}{2}\|y\|^{2}} d y \\
& =\left(\frac{1}{2 \pi}\right)^{d} \int_{R^{d}} \int_{R^{d}} \int_{R^{d}} f(x) \overline{f(z)} e^{i\langle x-z, y\rangle} e^{-\frac{\epsilon}{2}\|y\| \|^{2}} d x d z d y \\
& =\int_{R^{d}} \int_{R^{d}} f(x) \overline{f(z)} K_{\epsilon}(x-z) d x d z
\end{aligned}
$$

Let $\epsilon \rightarrow 0$.
Hence the map $f \rightarrow \widehat{f}$ extends from $\mathcal{S} \rightarrow \mathcal{S}$ as an isomorphism from $L_{2}\left(R^{d}\right) \rightarrow L_{2}\left(R^{d}\right)$.

$$
\langle f, g\rangle_{L_{2}\left(R^{d}\right)}=\langle\widehat{f}, \widehat{g}\rangle_{L_{2}\left(R^{d}\right)}
$$

Theorem 1.3. For $f \in L_{2}\left(R^{d}\right)$

$$
\lim _{\ell \rightarrow \infty} \int_{R^{d}}\left|\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \int_{\max _{i}\left|x_{i}\right| \leq \ell} f(x) e^{i\langle x, y\rangle} d x-\widehat{f}(y)\right|^{2} d y=0
$$

Proof. Note that $\left\|f \mathbf{1}_{\max _{i}\left|x_{i}\right| \leq \ell}-f\right\|_{L_{2}\left(R^{d}\right.} \rightarrow 0$ as $\ell \rightarrow \infty$
Interpolation. The Fourier transform T maps $L_{1}\left(R^{d}\right) \rightarrow L_{\infty}\left(R^{d}\right)$ and $L_{2}\left(R^{d}\right) \rightarrow L_{2}\left(R^{d}\right)$. By interpolation it will map for $1 \leq p \leq 2, L_{p}\left(R^{d}\right) \rightarrow L_{\frac{p}{p-1}}\left(R^{d}\right)$
Problem. For $f \in L_{p}\left(R^{d}\right)$ with $1 \leq p \leq 2$ does $\lim _{\ell \rightarrow \infty} \int_{|x| \leq \ell} f(x) e^{i\langle x, y\rangle} d x$ exists in $L_{\frac{p}{p-1}}\left(R^{d}\right)$? Give an example of a function f for which $\lim _{\ell \rightarrow \infty} \int_{|x| \leq \ell} f(x) e^{i x y} d x$ does not exist in any L_{p} with $p \geq 1$. Can you find one in $L_{3}\left(R^{d}\right)$?

1.2. Positive definite functions.

Theorem 1.4. If μ is a finite nonnegative measure on R^{d} its Fourier transform $g(y)=$ $\int_{R^{d}}{ }^{i\langle x, y\rangle} d \mu$ is a bounded continuous function on R^{d}. It is positive definite in the sense that for any finite collection $\left\{x_{j}\right\} \in R^{d}$ and complex numbers $\left\{z_{j}\right\} \in \mathbf{C}$

$$
\sum_{i, j} g\left(y_{i}-y_{j}\right) z_{i} \bar{z}_{j} \geq 0
$$

Conversely, if $g(y)$ is a continuous positive definite function on R^{d}, there is a unique nonnegative finite measure μ such that

$$
g(y)=\int_{R^{d}} e^{i\langle x, y\rangle} d \mu
$$

Proof.

$$
\sum_{i, j} g\left(y_{i}-y_{j}\right) z_{i} \bar{z}_{j}=\int_{R^{d}}\left|\sum_{j} z_{j} e^{i\left\langle y_{j}, x\right\rangle}\right|^{2} \mu(d x) \geq 0
$$

As for the converse we remark that if g is a positive definite function so is $h(y)=g(y) e^{i\langle a, y\rangle}$ for any $a \in R^{d}$.

$$
\sum_{i, j} h\left(y_{i}-y_{j}\right) z_{i} \bar{z}_{j}=\sum_{i, j} g\left(y_{i}-y_{j}\right) e^{i\left\langle a, y_{i}-y_{j}\right\rangle} z_{i} \bar{z}_{j}=\sum_{i, j} g\left(y_{i}-y_{j}\right)\left(e^{i\left\langle a, y_{i}\right\rangle} z_{i}\right) \overline{\left(e^{i\left\langle a, y_{j}\right\rangle} z_{j}\right)} \geq 0
$$

Convex combinations and constant multiples of positive definite functions are positive definite. Limits of positive definite functions are positive definite. If g is positive definite so is $\int_{R^{d}} g(y) e^{i\langle x, y\rangle} \phi(x) d x$ for $\phi \geq 0$. Taking $\phi(x)=\left(\frac{1}{\sqrt{2 \pi \epsilon}}\right)^{d} e^{-\frac{1}{2 \epsilon}\|x\|^{2}}$ we get that $g(y) e^{-\frac{\epsilon}{2}\|y\|^{2}}$ is again positive definite. It is therefore sufficient to note that if $g(y)$ is positive definite, continuous and integrable, then

$$
\int_{R^{d}} g(y) e^{-\frac{\epsilon}{2}\|y\|^{2}} d y=\left(\frac{\sqrt{\epsilon}}{\sqrt{2 \pi}}\right)^{d} \int_{R^{d}} \int_{R^{d}} g(y-z) e^{-\epsilon\|y\|^{2}} e^{-\epsilon\|z\|^{2}} d y d z \geq 0
$$

Hence $f_{\epsilon}(x)=\frac{1}{\sqrt{2 \pi}} \int_{R^{d}} g(y) e^{-\frac{\varepsilon}{2}\|y\|^{2}} e^{i\langle x, y\rangle} d y \geq 0$ and $\int_{R^{d}} f_{\epsilon}(x) d x=\sqrt{2 \pi} g(0)$. Then $f_{\epsilon}(x) d x$ has a limit as a nonnegative finite measure.

We will meed the following facts. If $g(y)$ is continuous and positive definite then $g(0) \geq 0$ and $|g(y)| \leq g(0)$. More over

$$
\left|g\left(y_{1}\right)-g\left(y_{2}\right)\right| \leq o\left(\left|y_{1}-y_{2}\right|\right)
$$

To see this the matrix $\left(\begin{array}{cc}g(0) & g(y) \\ g(-y) & g(0)\end{array}\right)$ is positive definite. Forces $g(-y)=\overline{g(y)}$ and $|g(y)|^{2} \leq[g(0)]^{2}$. Similarly the positive definiteness of the matrix

$$
\left(\begin{array}{ccc}
g(0) & g(a) & g(b) \\
g(-a) & g(0) & g(a-b) \\
g(-b) & g(b-a) & g(0)
\end{array}\right)
$$

yields the inequality $|g(a)-g(b)|^{2} \leq 1-|g(a-b)|^{2}$. Finally if $g(y)=\int e^{i\langle x, y\rangle} d \mu$ where μ is a nonnegative measure on R^{d},

$$
(2 \epsilon)^{-d} \int_{\left\{y: \sup _{i}\left|y_{i}\right| \leq \epsilon\right\}}[g(0)-g(y)] d y=\int\left[1-\Pi\left(\frac{\sin \epsilon x_{i}}{\epsilon x_{i}}\right)\right] \mu(d x) \geq \frac{1}{2} \mu\left[x: \sup _{i}\left|x_{i}\right| \geq 2 \epsilon^{-1}\right]
$$

This estimate allows us to choose a subsequence that has a limit μ in the weak topology which will be a probability distribution with g as its characteristic function.

