1.1. Fourier Transform on R?. S is the space of functions f such that f and all its
derivatives of all orders decay faster than any inverse power at infinity. That is, f € S, if
for any non negative integers k, k1, - - -, kg, there is a constant C'(ky, ..., kg, k), such that
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The Fourier transform of f is
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The Fourier transform of the convolution
g(x) = (fr* f2)(z / filx —2) fa(z dZ—/ f1(2) fa(x — 2)dz
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By analytic continuation

Theorem 1.1. If f € § so is fA More over
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Proof: Let f.(z) = (f * ¢¢)(x) where ¢ = (—A=)@e—2e /I,
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Let € — 0. Dominated convergence theorem on the left and approximation of identity on
the right.
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Theorem 1.2. For f € S
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Let € — 0.

Hence the map f — f extends from S — S as an isomorphism from Ly(RY) — Ly(RY).
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Theorem 1.3. For f € Ly(R%)
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Proof. Note that || f1max; |z:j<¢ — fllz,(re — 0 as £ — o0
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Interpolation. The Fourier transform 7 maps L; (R?) — Lo (R?) and Lo(R?) — La(RY).
By interpolation it will map for 1 < p <2, L,(R?%) — L v (Rd)

Problem. For f € L,(R%) with 1 < p < 2 does lim_, fxqu x)e! V) dx exists in
Lr (Rd) Give an example of a function f for which limy_, ., me f(x)e*¥dz does not

eX1st in any L, with p > 1. Can you find one in L3(R?)?

1.2. Positive definite functions.

Theorem 1.4. If p is a finite nonnegative measure on R? its Fourier transform g(y) =
S Rd e"® ¥ dy is a bounded continuous function on R?. It is positive definite in the sense
that for any finite collection {z;} € R? and complex numbers {z,} € C
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Conversely, if g(y) is a continuous positive definite function on R?, there is a unique
nonnegative finite measure p such that
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As for the converse we remark that if g is a positive definite function so is h(y) = g(y)e*(*¥
for any a € R%.
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Convex combinations and constant multiples of positive definite functions are positive
definite. Limits of positive definite functions are positive definite. If g is positive definite S0
is [pa g(y)e! @Y ¢(x)dx for ¢ > 0. Taking ¢(x) = (\/%) e~z l21” we get that g(y)e sl

e
is again positive definite. It is therefore sufficient to note that if g(y) is positive definite,

continuous and integrable, then
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Hence f.(z) = \/%—ﬂfRd g(y)e~glvlPeilev) gy > 0 and Jpa fe(x)dz = +/2mg(0). Then

fe(z)dx has a limit as a nonnegative finite measure.

We will meed the following facts. If g(y) is continuous and positive definite then g(0) > 0
and |g(y)| < ¢(0). More over

l9(y1) — 9(y2)| < o(ly1 — y2|)

To see this the matrix (ggg(_(zi) zggg) is positive definite. Forces g(—y) = ¢(y) and

l9(y)|? < [g(0)]%. Similarly the positive definiteness of the matrix

9(0)  g(a) g(b)
g(=a)  9(0)  g(a—0)
9(=b) g(b—a)  g(0)

yields the inequality |g(a) — g(b)|> < 1 — |g(a — b)|?. Finally if g(y) = [ *®¥ du where p
is a nonnegative measure on R
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This estimate allows us to choose a subsequence that has a limit p in the weak topology
which will be a probability distribution with g as its characteristic function.



